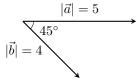
MATH 2E Prep: Products of Vectors


Facts to Know:

- 1. Dot product:
 - If $\vec{u} = \langle x_1, y_1, z_1 \rangle$, $\vec{v} = \langle x_2, y_2, z_2 \rangle$, then $\vec{u} \cdot \vec{v} =$
 - $\vec{u} \cdot \vec{v}$ is a scalar / vector.
 - $\vec{u} \cdot \vec{v} =$
 - $\vec{u} \perp \vec{v}$ if and only if ______
- 2. Cross product:
 - If $\vec{u} = x_1 \mathbf{i} + y_1 \mathbf{j} + z_1 \mathbf{k}$, $\vec{v} = x_2 \mathbf{i} + y_2 \mathbf{j} + z_2 \mathbf{k}$, then $\vec{u} \times \vec{v} =$
 - $\vec{u} \times \vec{v}$ is a scalar / vector.
 - $|\vec{u} \times \vec{v}| =$
 - $\vec{u} \times \vec{v}$ is ______ to both \vec{u} and \vec{v} .
 - The right-hand rule.
 - $\vec{u} /\!\!/ \vec{v}$ if and only if ______.

Examples:

- 1. Determine whether $\vec{u}=\langle 3,5,4\rangle$ is perpendicular to $\vec{v}=\langle 1,-2,2\rangle.$
- 2. $\vec{u}=\langle 3,5,4\rangle,\, \vec{v}=\langle 1,-2,2\rangle,\, \text{compute } \vec{u}\times\vec{v} \text{ and } \vec{v}\times\vec{u}.$

3. Use the following figure to find $|\vec{a} \times \vec{b}|$, and determine whether $\vec{a} \times \vec{b}$ is directed into the page or out of the page.

